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Heme oxygenase (HO) catalyzes oxidative breakdown
of heme, and constitutes two isozymes, HO-1 and
HO-2. Here, we explored the tissue-specific regulation
of expression of HO-1 and HO-2 under hypoxemia.
There was no significant change in the overall expres-
sion levels of HO-1 and HO-2 mRNAs and proteins
in the lung during adaptation of C57BL/6 mice to nor-
mobaric hypoxia (10% O,). However, immunohisto-
chemical analysis revealed the increased expression of
HO-1 and HO-2 proteins after 28 days of normobaric
hypoxia in the pulmonary venous myocardium that is
the extension of the left atrial myocardium into pulmo-
nary venous walls. Moreover, the expression of HO-2
protein was increased in the sub-endocardial myocar-
dium of ventricles under hypoxia, while HO-1 protein
level was increased in the full-thickness walls. Thus,
hypoxemia induces expression of both HO-1 and
HO-2 proteins in the myocardium. Using C57BL/6
mice lacking HO-2 (HO-2"/7), which manifest chronic
hypoxemia, we also showed that the HO-1 protein level
in the lung was similar between HO-2"/~ mice and
wild-type mice. Unexpectedly, HO-1 protein level was
lower by 35% in the HO-2"/~ mouse liver than the
wild-type liver. These results indicate that the expres-
sion of HO-1 protein is regulated in a tissue-specific
manner under hypoxemia.

Keywords: bilirubin/heart/heme oxygenase/
hypoxemia/hypoxia/liver/lung/myocardium/
oxygen sensor.

Abbreviations: HO, heme oxygenase; L-PGDS,
lipocalin-type prostaglandin D synthase; PG,
prostaglandin.

Heme oxygenase (HO) is the rate-limiting enzyme in
heme catabolism and constitutes two structurally
related isozymes, HO-1 and HO-2 (/-—3). Both
isozymes share ~43% overall amino acid identity
(2, 4, 5) and cleave heme to form biliverdin IXa,
carbon monoxide (CO) and iron at the expense of
molecular oxygen and NADPH (6, 7). Biliverdin IXa
is rapidly reduced to bilirubin IXa. However, HO-1
and HO-2 show the distinct features in their structures
and expression profiles (8). Human HO-1 of 288 amino
acids lacks a cysteine residue (4), whereas human HO-2
of 316 amino acids contains three cysteine residues (J5),
each of which is present as a dipeptide of cysteine and
proline (CP motif) and may function as the heme-
binding site (9). HO-2 has been therefore postulated
to play a regulatory role by sequestering heme to main-
tain the intracellular heme level (9). Recently, it has
been proposed that HO-2 functions as an oxygen
sensor (10, 11). It is, therefore, of physiological signif-
icance to study the regulation of HO-2 expression
under hypoxia in the cardio-pulmonary tissues.

Expression of HO-1 mRNA is induced by various
environmental factors in human cell lines, despite that
expression level of HO-2 mRNA is maintained within
narrow ranges (/2—I14). On the other hand, HO-1
expression is reduced by various environmental factors
(15—19), which also represents an important response
for maintaining cellular homeostasis (8). Likewise, the
expression level of HO-2 is decreased under certain
conditions, such as the placental tissues of abnormal
pregnancies (20) and cultured human cell lines (21,22).
In this connection, the expression levels of both HO-1
and HO-2 proteins are significantly reduced in the
mouse liver after 7 days of normobaric hypoxia
(10% O, at the sea-level barometric pressure), and
concomitantly returned to the basal levels after 14
days of hypoxia, as judged by western blot analysis
(23). Thereafter, the expression levels of HO-1 and
HO-2 proteins remained at the basal level in the liver
for up to 28 days of hypoxia (23). In contrast, the
expression levels of both HO-1 and HO-2 proteins
are increased in the heart after 28 days of normobaric
hypoxia (23). These results indicate the difference in
the regulation of HO-1 and HO-2 expression between
the liver and the heart.

Hypoxemia is a common manifestation of various
diseases, such as chronic obstructive pulmonary dis-
ease and sleep apnea syndrome (24). Hypoxemia is a
hemodynamic stress and may cause pulmonary hyper-
tension that generates pressure overload to the right
ventricle. Among the mechanisms that cause hypoxe-
mia, ventilation—perfusion mismatch is the most
common cause of hypoxemia (24). We have shown
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that HO-2 deficient (HO-27/7) mice exhibit mild
hypoxemia and attenuated hypoxic ventilatory
responses with normal hypercapnic ventilatory
responses (/0). Considering the normal morphology
of the alveolar structure of HO-27/~ mice (10), we
have proposed that the ventilation—perfusion mis-
match is responsible for the hypoxemia in HO-27/~
mice (10, 24). On the other hand, HO-2~/~ mice exhibit
the hypertrophy of the pulmonary venous myocar-
dium, which may reflect adaptation to persistent
hypoxemia (25—27). The pulmonary venous myocar-
dium represents the extension of atrial myocardium
into the vascular walls of the pulmonary veins
(26, 27). Moreover, overall expression of HO-1 })rotein
is increased in the heart and testis of HO-27'~ mice
(28). These results suggest that HO-27/~ mice may
compensate for the loss of HO-2 by increasing the
expression of HO-1. Indeed, HO-27/~ mice are fertile
and show relatively mild phenotypes (29).

In the present study, we analysed the expression
levels of HO-1 and HO-2 in the lung and heart of
wild-type mice kept under normobaric hypoxia (10%
0»). In addition, using HO-2"/~ mice, we explored the
potential role of HO-2 for the expression of HO-1 in
the lung and liver.

Materials and Methods

Animal treatment

Male C57BL/6 mice (5-week old) were obtained from the Animal
Experimental Center of Tohoku University School of Medicine
(Sendai, Japan) and were housed for 1 week before the beginning
of the study. All animal experiments were performed based on the
institutionally approved protocol of Tohoku University School of
Medicine. Mice were maintained under normoxia or normobaric
hypoxia (10% O,) for 28 days, as detailed previously (23, 30, 31).
The O, concentration chosen is equivalent to the value at an altitude
of ~5,000m, but with normobaric pressure at the sea level.
Normobaric hypoxia was used as a means to generate hypoxemia.
The hypoxic chamber was opened twice a week for 15 min for feed-
ing and cleaning up cages. At the end of the exposure, the animals
were anesthetized with diethyl ether and killed. The lungs were
isolated from the same mice that were used to isolate the hearts
and livers in our earlier report (23).

Morphological examination of the lung

The lungs were isolated from C57BL/6 mice maintained under nor-
moxia or hypoxia for 28 days, fixed in 4% paraformaldehyde for
24h at room temperature, and paraffin-embedded. Deparaffinized
sections of the lung were stained by elastica Masson straining
method to evaluate muscularization (medial thickening) of pulmo-
nary arterioles. Pathological changes of the pulmonary arterioles
(<50 um in diameter) were assessed by the microscopic examination,
as previously reported (32, 33).

Western blot analysis

Tissue extracts were prepared from the hearts and lungs of mice
exposed to normoxia or hypoxia for up to 28 days, as detailed
previously (23). Each sample (20 ug of protein) was analysed on
a SDS-polyacrylamide gel (10%) and electrophoretically transferred
to a polyvinylidene difluoride membrane (Immobilon-P, Millipore
Corporation, Bedford, MA, USA). The membranes were treated
overnight at 4°C in Tris—buffered saline with 0.1% Tween 20
(TBS-T), containing 5% non-fat dry milk and were washed three
times each for 5min in TBS-T at room temperature. The membranes
(western blots) were then incubated with a rabbit polyclonal anti-
body against rat HO-1 (34) or mouse HO-2 (SPA-897, StressGen
Biotechnologies Corp., Victoria, British Columbia, Canada) in
TBS-T for 1 h at room temperature or overnight at 4°C. The reaction
mixture contained 5% non-fat milk for HO-1 antibody (a dilution
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of 1:1000) and 1% non-fat milk for HO-2 antibody (a dilution of
1:2000). The specific immunocomplexes were detected with a west-
ern blot kit (ECL Plus, Amersham Biosciences, Little Chalfont,
UK). Expression of a-tubulin was determined as an internal control
with o-tubulin antibody (Neo Markers, Fremont, CA, USA).

Northern blot analysis

Total RNA was extracted from the lung and subjected to Northern
blot analysis, as detailed previously (23). The expression of B-actin
mRNA was examined as an internal control (23). The cDNA probes
for HO-1, HO-2 and B-actin mRNAs were labelled with [o-32P]
dCTP (Amersham Biosciences, UK) by the random priming
method and were used as hybridization probes, as described pre-
viously (23).

Immunohistochemical analysis

The hearts and lungs were isolated from wild-type mice maintained
under normoxia or hypoxia for 28 days. Paraffin-embedded tissues
of wild-type mice were sectioned at 2.5pm in thickness.
Immunohistochemical study was performed on the deparaffinized
sections using a standard labelled streptavidin—biotin method
(Nichirei, Tokyo, Japan), as described previously (28). Rabbit poly-
clonal antibody to rat HO-1 (34) was used at a 1:400 dilution, and
rabbit polyclonal antibody to mouse HO-2 (SPA-897, StressGen,
Biotechnologies, Victoria, British Columbia, Canada) was used at
a 1:200 dilution. Nuclei on the tissue sections were visualized with
hematoxylin.

HO-2/~ mice

HO-27/ mice with C57BL/6J5129/Sv mixed genetic background
were generated as previously described (29). Male homozygous
HO-2"/" mice were backcrossed with female C57BL/6J mice. After
the backcross for six generations, heterozygous HO-2 mice were
intercrossed and their littermates were used for this study (/0).
Tissue extracts were prepared from the lung and liver of HO-27/~
mice (10-week old) and age-matched wild-type mice, as described
previously (28). These tissues were isolated from the same
HO-27/" mice and wild-type mice that were used to isolate the
hearts and testes in our earlier report (28). This series of animal
experiments was also performed based on the institutionally
approved protocols of Tohoku University School of Medicine and
Fukushima Medical University.

Statistical analysis

All data were derived from 3 to 5 animals per each treatment, and
are expressed as means =+ SEM. Statistical analyses were performed
with two-way analysis of variance (factorial design) with a post hoc
comparison test (Fisher’s Protected Least Significant Difference
exact test) with commercially available software (Statview 4.0,
Carabasas, CA). Two-tailed Student’s r-test was also used for
comparison between the two groups. Differences between mean
values were considered significant when P < 0.05.

Results

Effects of hypoxia on the pulmonary artery

and expression of HO-1 and HO-2 in the lung

We have reported that C57BL/6 mice respond to
normobaric hypoxia (10% O,) by enhancing CO
production, as judged by the increased CO level in
the arterial blood (23). The arterial CO content reflects
the overall heme degradation (35). Importantly, the
increased CO level was returned to the basal level
(normoxia level) after 28 days of hypoxia (23). In con-
trast, the time-course study revealed the increase in the
expression levels of HO-1 and HO-2 proteins in the
heart at 28 days of normobaric hypoxia, as judged
by western blot analysis (23). To confirm whether
these changes reflect the adaptation to the pressure
overload, which was generated by pulmonary hyper-
tension, we analysed the alveolar architecture and the
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pulmonary arterioles (<50 um in diameter) after 28
days of hypoxia (Fig. 1A and B). The vascular wall
of the small pulmonary artery was noticeably thick-
ened in the hypoxia-exposed mice, which is consistent
with the so-called muscularized artery, associated
with pulmonary hypertension (32, 33). In contrast,
no noticeable changes were detected in the alveolar
architecture. These results support the notion that
the pressure overload was indeed generated under the
hypoxic conditions employed, thereby confirming the
validity of the hypoxic model used.

Accordingly, using the same model of chronic
hypoxemia, we analysed the expression levels of
HO-1 and HO-2 proteins in the lung of the mice kept
under hypoxia (Fig. 1C). Unexpectedly, no significant
changes were detected in the overall expression
levels of HO-1 and HO-2 proteins in the lung after
28 days of hypoxia, whereas the expression levels
of HO-1 and HO-2 proteins were increased in the
heart by 2.8- and 1.5-folds (Fig. 1C), respectively,
as reported previously (23). It is also noteworthy
that the mice did not show noticeable cardiac hyper-
trophy after 28 days of hypoxia; namely, there was
no significant difference in the heart weights between
normoxia (160+ 10mg/heart, n=3) and hypoxia
(180 & 50 mg/heart, n=13).

Expression levels of HO-1 and HO-2 in the lung
during adaptation to hypoxia

There was no noticeable change in the expression levels
of HO-1 and HO-2 proteins in the lung after 28 days
of hypoxia (Fig. 1C), which prompted us to perform
the time-course study to detect the possible changes
during earlier phase of hypoxia. Using the same
model of chronic hypoxemia, we analysed the expres-
sion profiles of HO-1 and HO-2 mRNAs and proteins
in the lung of the mice kept under hypoxia (Fig. 2).
However, no significant change was detected in the
overall expression levels of HO-1 and HO-2 mRNAs
and proteins in the lung during adaptation to normo-
baric hypoxia. There may be the tendency that expres-
sion levels of HO-1 and HO-2 are increased during
acute phase of hypoxia (within 1 day), but the differ-
ence was not statistically significant.

Increased expression of HO-1 and HO-2 proteins

in the pulmonary venous myocardium

We next analysed the expression profiles of HO-1 and
HO-2 in the lung by immunohistochemistry. The
expression of HO-1 and HO-2 proteins was detected
in the alveolar architecture under normoxia and
hypoxia (Fig. 3) and the pulmonary artery (data not
shown). Moreover, HO-1 and HO-2 proteins are
expressed in the pulmonary venous myocardium
(Fig. 3A and C, compared with E), and their expres-
sion levels were marginally increased under hypoxia
(Fig. 3B and D). We then analysed the tissue sections
at higher magnification, showing that hypoxia
increased the expression levels of HO-1 and HO-2
proteins in the pulmonary venous myocardium (four
small panels shown in Fig. 3). Consistent in part with
such a small increase, there was no significant change

Inter-tissue difference in regulation of heme catabolism
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Fig. 1 Effects of hypoxia on the pulmonary artery and expression
levels of HO-1 and HO-2 proteins in the lung and heart. (A) and
(B) Remodeling of the pulmonary artery after adaptation to
normobaric hypoxia. Wild-type C57BL/6 mice were exposed to
hypoxia or kept under normoxia for 28 days. The lungs were
isolated from mice exposed to normoxia (A) or hypoxia (B).
Deparaffinized sections of the lung were stained with
Elastica—Masson trichrome to evaluate muscularization of
pulmonary arterioles: elastic lumina, stained in black-purple,
collagen (green) and smooth muscle (red). A scale bar of each panel
indicates 50 um. (C) Effect of hypoxia on expression levels of HO-1
and HO-2 proteins. The hearts and lungs were isolated from wild-
type mice after exposure to normobaric hypoxia (H) for 28 days or
age-matched control kept under normoxia (N). The data shown are
one representative of four or five independent experiments with
similar results (=5 for lungs and n =4 for hearts). To normalize the
expression levels of HO-1 and HO-2, the western blot was reused for
a-tubulin. At bottom, relative expression levels of HO-1 and HO-2
proteins are shown. The intensities of the signals in the western blots
were normalized with respect to the intensity for a-tubulin. The
relative expression level of HO-1 or HO-2 protein indicates the ratio
of each normalized value to that of the control kept under normoxia
and is shown as percentage (%). For easy comparison, the level of
HO-1 or HO-2 under normoxia is shown as an open column. A
symbol represents statistically significant difference compared to
the respective control (*P <0.03).

in the expression levels of HO-1 and HO-2 proteins
in the lungs excised from mice exposed to hypoxia
by western blot analysis (Fig. 2). The undetectable
change in the expression levels may also reflect the
fact that the lung consists of many cell types, in
which the pulmonary venous myocardium represents
a small population. In contrast, the heart consists of
a single predominant population of myocardium.

It is noteworthy that the pulmonary venous
myocardium is thickened in HO-27/~ mice that mani-
fest chronic hypoxemia (/0). However, unlike the
HO-27/~ mice (10), the pulmonary venous myocar-
dium was not noticeably thickened in the wild-type
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Fig. 2 Expression profiles of HO-1 and HO-2 in the lung during normobaric hypoxia. (A) Northern blot analysis of HO-1 and HO-2 mRNAs.
The lungs were isolated from C57BL/6 mice after exposure to hypoxia (H) for the indicated time (day) or age-matched control kept under
normoxia (N). Total RNAs were extracted from each lung tissue, and subjected to Northern blot analysis. Each lane contains 20 pg of total
RNA. The bottom blot shows the expression of f-actin mRNA as an internal control. Shown is one of the three independent experiments.
The bottom panel shows the relative expression levels of HO-1 and HO-2 mRNAs, representing the ratio of each normalized value under
hypoxia to that of the age-matched control mice, kept under normoxia. The intensities of the signals in the northern blots were normalized with
respect to the intensity for B-actin. The level of HO-1 or HO-2 mRNA under normoxia at each time point is shown as open column for easy
comparison. (B) Western blot analysis of HO-1 and HO-2 proteins. The tissue extracts were prepared from the lungs, and subjected to western
blot analysis. Each lane contains 20 pg protein. The data shown are one of three independent experiments with similar results. To normalize the
expression levels of HO-1 and HO-2, the same western blot was reused for a-tubulin. The intensities of the signals in the western blots were
quantified, and the intensity of HO-1 or HO-2 protein was normalized with respect to the intensity for a-tubulin. The relative expression level of
HO-1 or HO-2 protein indicates the ratio of each normalized value to that of the respective age-matched control kept under normoxia and
is shown as percentage (%) (bottom panel). For easy comparison, the level of HO-1 or HO-2 under normoxia at each time point is shown as
open column. No significant difference was detected at any time points. The relative expression on day 2 was not presented (bottom panel),

because no change was detected.

mice exposed to normobaric hypoxia for 28 days
(Fig. 3).

Increased expression of HO-1 and HO-2 proteins

in the ventricular walls

Immunohistochemical analysis revealed that HO-1
and HO-2 proteins are expressed in the entire walls
of both right and left ventricles under normoxia
(Fig. 4A and C, compared with E). Hypoxia increased
the expression levels of HO-1 protein in the full-
thickness walls of the ventricles (Fig. 4A and B). In
contrast, the expression of HO-2 protein was increased
mainly in the sub-endocardial regions (Fig. 4C and D).
We then analysed the tissue sections at higher magni-
fication (Fig. 4, small panels), confirming that hypoxia
increased the expression levels of HO-2 protein in the
sub-endocardial myocardium of the right ventricle
(small panel at bottom) and the left ventricle (not
shown).

Distinct expression profiles of HO-1 protein in

the HO-2~/~ mouse lung and liver

To explore the regulation of HO-1 expression in the
lung under hypoxemia, we measured the ex?ression
level of HO-1 protein in the lungs of HO-27/~ mice,
another model of chronic hypoxemia (10). HO-27/~
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mice exhibit the thickening of the pulmonary venous
myocardium with over-expression of HO-1 protein
(10), which may reflect adaptation to persistent hypox-
emia. However, western blot analysis revealed no
noticeable difference in the overall expression level of
HO-1 protein in the lung between HO-2~/~ mice and
wild-type mice (Fig. 5SA), despite the increase in the
expression of HO-1 protein in the pulmonary venous
myocardium (/0). These results are consistent in part
with the expression level of HO-1 protein in the lung
of wild-type mice during acclimatization to hypoxia
(Fig. 1C). The identity of HO-2~/~ mice was confirmed
by western blot analysis of the testis; namely, HO-2
protein was undetectable in the tissue extracts from
the testes of HO-27/~ mice (28). We also measured
the expression level of HO-1 protein in the liver,
because the expression levels of HO-1 and HO-2
proteins were transiently decreased in the liver during
adaptation of wild-type C57BL/6 mice to normobaric
hypoxia (23), which may reflect the liver-specific regu-
lation of heme catabolism. Unexpectedly, the expres-
sion level of HO-1 protein was lower by 35% in the
liver of HO-27/~ mice, compared to the wild-type
mouse liver (Fig. 5B). These results suggest that
HO-27/~ mice compensate for the loss of HO-2 by
modulating HO-1 expression in the tissue-specific
manner.
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Fig. 3 Increased expression of HO-1 and HO-2 proteins in the pulmonary venous myocardium. Immuno-histochemical analysis was performed

in the lungs, isolated from wild-type mice exposed to normoxia (A, C and E) or hypoxia (B, D and F) for 28 days. Tissue sections were
stained with anti-HO-1 (A and B) or anti-HO-2 antibody (C and D), except for panels stained with control serum (E and F). Letter V

indicates the lumen of the pulmonary vein. A scale bar of each panel indicates 200 um. Four small panels at right side show the portion of
the pulmonary venous myocardium at higher magnification (scale bar, 10 pm), stained with anti-HO-1 antibody (top panels) or anti-HO-2

antibody (bottom panels). PV indicates the pulmonary venous myocardium.
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Fig. 4 Hypoxia increases expression of HO-1 and HO-2 proteins in the ventricular walls. Immuno-histochemical analysis was performed in
the hearts, isolated from mice exposed to normoxia or hypoxia for 28 days. Tissue sections of both ventricles were stained with anti-HO-1

(A and B), anti-HO-2 antibody (C and D) or control serum (E and F). A scale bar of each panel indicates | mm. Right ventricle, RV

and left ventricle, LV. A selected region of the RV, marked with a square, is enlarged and shown at the right side of LV in B and D (a scale bar,

100 um). Note that the induction of HO-2 is localized in the sub-endocardial regions (arrow).
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Discussion

In this study, using normobaric hypoxia as a means
to generate hypoxemia in mice, we show for the first
time that the expression of HO-1 and HO-2 proteins
is increased in the pulmonary venous myocardium
after acclimatization to hypoxemia. In addition, the
expression of HO-2 protein is increased in the sub-
endocardial myocardium of the right and left ventri-
cles, whereas the expression of HO-1 protein is
increased in the entire walls of both ventricles. The
increase in the expression of HO-1 and HO-2 proteins
in the myocardium may reflect the adaptation to
hemodynamic stress. In contrast, there is no significant
change in the expression of HO-1 and HO-2 mRNAs
and proteins in the lung during acclimatization to
hypoxia. Likewise, the expression level of HO-1 pro-
tein in the lung is similar between wild-type mice and
HO-2"/~ mice, another model of mild hypoxemia (10).

The unexpected finding of the present study is the
increased expression of HO-2 protein restricted to the
sub-endocardial myocardium. Importantly, the sub-
endocardial myocardium is linked to the Purkinje con-
ducting system located bencath the endocardial
endothelial cells (36), and is responsible for synchro-
nized contraction of the right and left ventricles.
Because HO-2 is involved in Ca signaling (37), it is
conceivable that HO-2 may play a regulatory role in
Purkinje cells, the main function of which depends on
Ca dynamics (36). In this context, it has been reported
that HO-2 interacts with o-subunit of a large
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Fig. 5 Expression levels of HO-1 protein in the lung and liver of
HO-2"/~ mouse. The tissue extracts were prepared from the

lungs (A) and livers (B) of age-matched wild-type mice (10 weeks)
and HO-27/~ C57BL/6 mice (n=3 for each group of mice), and
subjected to western blot analysis. Top panels show western blot
analysis of HO-1 and a-tubulin proteins. Bottom panels show

the relative expression levels of HO-1 protein in each organ.

To normalize the expression levels of HO-1, the same western

blot was reused for a-tubulin. The intensities of the signals in the
western blots were quantified, and the intensity of HO-1 protein
was normalized with respect to the intensity for o-tubulin. The
relative expression level of HO-1 protein indicates the ratio of
each normalized value to that of the respective control and is shown
as ratio. The data shown are one of two independent experiments
with similar results. The data shown are derived from three animals.
An asterisk represents statistically significant differences compared
to the wild-type mouse liver (*P < 0.001). No significant difference
was detected in the lung.
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conductance, calcium-sensitive potassium channel
(the BK channel) (/7). Considering the regulatory
role of HO-2 for the ventilation—perfusion matching
(10,25), we speculate that HO-2 may also contribute to
matching coronary blood flow to myocardial oxygen
consumption.

The pulmonary veins have been largely ignored until
recently, as they are regarded as passive conduits.
Recently, the pulmonary venous myocardium attracts
much attention, because atrial fibrillation frequently
originates from the pulmonary venous myocar-
dium (38,39). We have reported that expression
of lipocalin-type prostaglandin (PG) D synthase
(L-PGDS) is induced in the pulmonary venous myo-
cardium as well as in the myocardium of both ventri-
cles of C57BL/6 mice kept under normobaric hypoxia
(28). L-PGDS catalyzes the isomerization of PGH, to
produce PGD, (40), and PGD, exerts various func-
tions (40), including induction of HO-1 expression in
cultured human cell lines (47,42). We have, therefore,
proposed the regulatory network involving L-PGDS/
PGD, and HO-1 (43). In this context, expression of
L-PGDS mRNA and protein was not detectable in
the same preparations of the lung total RNAs and
protein extracts used in the present study, as judged
by Northern blot and western blot analyses (data not
shown). It is also noteworthy that carboxyhemoglobin
level is significantly higher in the arterial blood than
that in the central venous blood, taken from the right
atrium, in critically ill patients and healthy individuals
prior to orthopedic surgery (44). Considering the
results of the present study, we suggest that a substan-
tial amount of CO may be produced and released from
the pulmonary vasculatures. In fact, the increased
expression of HO-1 protein is associated with bilirubin
IXo accumulation within the aortic walls in a rabbit
model of atherosclerosis, suggesting that heme is
actually degraded in the vascular wall by the induced
HO-1 (45). It is, therefore, conceivable that HO-1 and
HO-2 in the pulmonary venous myocardium may be
responsible for the production of CO, thereby causing
the arterio—venous CO difference.

Unlike the HO-27/~ mice, the pulmonary venous
myocardium was not thickened in the wild-type mice
exposed to normobaric hypoxia for 28 days, suggesting
that the normobaric hypoxic condition employed is
not sufficient to cause hypertrophy of the pulmonary
venous myocardium. In fact, the thickening of the
pulmonary venous myocardium has been shown to
represent the adaptation to high-altitude hypoxia
with low-barometric pressure in mice (27) and
humans (26).

The over-expression of HO-1 protein was reported
in the lung of HO-27/~ mice by other investigators
(46), which is, however, different from the present
study. We do not know the reason that could account
for the discordant result. In this connection, we have
shown that the expression levels of HO-1 protein are
higher by 1.7-fold in the testis and by 2.5-fold in the
heart of HO-27/~ mice than those in the respective
tissue of wild-type mice (28). It is also noteworthy
that the expression level of HO-1 /protein is signifi-
cantly lower in the liver of HO-27'~ mice than that
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in the wild-type liver. Importantly, we isolated testes,
hearts, lungs and livers from the same HO-2~/~ mice
and wild-type mice. Considering the facts that the CO
contents in the arterial blood are similar between the
HO-2"/" mice and the wild-type mice (10, 29) and that
heme level remained unchanged in various tissues of
HO-27/~ mice (47), we suggest that HO-27/~ mice
maintain the overall heme catabolism by increasing,
keeping or decreasing the expression level of HO-1,
depending on the organs. In this connection, the
mutant mouse with the hepatocyte-specific deletion
of HO-1 gene, generated by the conditional knockout
method, are viable and exhibit no severe phenotype
under basal conditions, despite that only 30% levels
of HO-1 are expressed in the mutant mouse liver
(48). Tt is, therefore, conceivable that the amount of
heme catabolism may be maintained in the liver of
HO-27/~ mice, despite the 35% decrease in HO-1
protein.

The decrease in the HO-1 expression in the HO-27/~
liver is of particular interest, with respect to the liver-
specific regulation of heme catabolism. In case of the
human liver, expression of HO-1 protein appears to
increase or decrease, depending on the local hemo-
dynamic status. HO-1 is expressed mainly in a sub-
population of Kupffer cells in the liver of control
subjects (49). However, in cirrhotic livers with portal
hypertension, which is associated with the increase in
intrasinusoidal resistance and regenerative changes in
the liver parenchyma, HO-1 protein is expressed in
Kupffer cells and hepatocytes. Likewise, in acute hepa-
tic failure, HO-1 expression is increased in hepatocytes
(50). In contrast, there is a significant decrease in the
HO-1 protein expression in Kupffer cells and hepato-
cytes in idiopathic portal hypertension that are char-
acterized by an increase in pre-sinusoidal resistance
(49). These results indicate that the expression level
of HO-1 protein is dynamically changed in the liver,
depending on the cellular microenvironments.

In summary, we have provided the in vivo evidence
for the inter-tissue and inter-cell differences in the reg-
ulation of expression of HO-1 and HO-2 proteins
under hemodynamic stress. Moreover, HO-2~/~ mice
maintain the overall heme catabolism by resetting the
expression level of HO-1 in a tissue-specific manner,
suggesting that HO-2 may be involved in the regula-
tion of HO-1 expression under certain conditions.
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